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Abstract

The steady state response of a long string on a non-linear, visco-elastic foundation to uniformly moving
constant point loads is studied. The phase plane is employed to construct a phase portrait that determines
the string response. This portrait consists of trajectories of the autonomous system that represent the string
displacement everywhere except at the loading points, and vertical segments that satisfy the boundary
conditions in these points. It is shown that the string response depends crucially on the ratio between the
load velocity and the wave speed in the string. If the load moves slower than the waves in the string, then
the response is nearly symmetric with respect to the load and decays exponentially with the distance form
the load. If the load velocity exceeds the wave speed, then the string exhibits a wave pattern, which extends
well behind the load. In front of the load, in this case, the string is not disturbed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The increase in travelling speed of modern high-speed trains can lead to a significant dynamic
amplification of vibrations of overhead power lines (catenaries). This amplification becomes
especially pronounced when the train speed approaches the wave speed in a contact cable. The
latter speed is about 250–350 km/h and is easily reachable for present day trains. Thus, the
catenary system may undergo intense vibrations. Such vibrations would make the droppers that
support the contact cable exhibit non-linear behaviour, manufested by a much higher resistance of
the droppers to tension than to compression. To study the effect of this non-linearity on response
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of the catenary to a moving current collector (pantograph), a non-linear statement of the problem
is necessary.
The vast majority of papers on the catenary dynamics deal with a linear statement of the

problem. Within such statement, Jezequel [1], Vesnitskii and Metrikine [2], and Belotserkovskiy
[3] studied the radiation of elastic waves into the catenary by a uniformly moving pantograph and
analyzed conditions of resonance. Vesnitskii and Metrikine [2], and Wu and Brennan [4,5]
investigated the stability of the transverse motion of the pantograph–catenary system. Manabe
and Fujii [6] followed by Manabe [7], Aboshi and Manabe [8], and Arnold and Simeon [9]
analyzed the contact force between the catenary and the moving pantograph. Since this force
plays the major role in the efficiency of the current collection, Balestrino et al. [10] proposed an
active control method for keeping the contact force constant. An extended reference list of other
papers on linearized dynamics of the catenary–pantograph system can be found in Fr!yba [11].
Research on non-linear dynamics of the pantograph-catenary system and, in general, on the

dynamics of a non-linear elastic system under a moving load has nearly always been accomplished
numerically. Wu and Chen [12] analyzed the transient catenary–pantograph dynamics by using a
direct time integration technique. Non-linear modelling of the dynamic response of suspended
bridges to a moving load was presented by Hino et al. [13], Rakowski [14], and Lee [15]. An
extension of these studies to the case of a random moving load was performed by Yoshimura et al.
[16] and Bryja and Sniady [17].
According to the author’s knowledge, the only analytical studies on the response of a non-linear

elastic system to a moving load was presented by Yen and Sing [18] and Metrikine [19]. The
former authors studied the response of a geometrically non-linear string to a moving load,
focusing their attention on the transition through the wave speed. The study was accomplished by
employing a perturbation technique. Metrikine [19] presented a geometric method of finding the
stationary waves that can be generated by a moving load in a non-linear string.
In the present paper, a simple model for a one-level catenary is considered. The model is

composed of a string and a distributed visco-elastic foundation, which supports the string. The
string represents the contact cable, whilst the foundation models the reaction of the droppers. The
stiffness of the foundation is assumed to be zero in compression and to have a non-linear
character in tension. The string is subjected to gravitational loading.
The main objective of the study is to analyze the steady state response of the string to a set

of two uniformly moving constant loads that represent the action of two pantographs of a train.
In the steady state regime, the deflection field in the string remains stationary in the moving
reference system that is fixed to the loads. This field is governed by an ordinary differential
equation, as in the case of solitons, but with special discontinuous ‘‘boundary conditions’’ at the
loading points.
The paper is structured in the following manner. First, a partial differential equation that

governs the string motion is formulated along with the boundary conditions at the loading points
and at infinity. Then, this equation is reduced to an ordinary differential equation by introducing
a moving reference system that is fixed to the load. The latter equation, accompanied by
accordingly reformulated boundary conditions, describes stationary (with respect to the loads)
patterns in the string that may be generated by the loads. As a reference for the following non-
linear analysis, first the string response is found analytically in the linearized case. Then,
employing the phase plane, a non-linear response of the string to one load is determined thereby
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demonstrating the method of analysis. The paper concludes by applying the proposed method to
the case of two moving loads.

2. Model

Consider an infinitely long taut string under tension T ; supported by a continuously distributed
visco-elastic foundation as shown in Fig. 1. The mass density per unit length of the string is m; the
stiffness per unit length and viscosity per unit length of the foundation are kðwÞ and cdp;
respectively (w ¼ wðx; tÞ is the vertical displacement of the string). The string is subject to
gravitational loading and two point loads of a constant magnitude P that move along the string
with a constant velocity V ; at a constant distance d from each other.
By neglecting the geometric non-linearity of the string, which is of secondary importance for the

model in question, the equation of motion for a differential element of the string and the
boundary conditions at the loading points and at infinity are given as [11]

m
@2w

@t2
� T

@2w

@x2
þ cdp

@w

@t
þ k wð Þw ¼ �mg; �NoxoN; xaVt; xaVt þ d;

wjx¼Vtþ0¼ wjx¼Vt�0; wjx¼Vtþdþ0¼ wjx¼Vtþd�0;

T � mV2
� � @w

@x

����
x¼Vtþ0

�
@w

@x

����
x¼Vt�0

� �
¼ �P;

T � mV2
� � @w

@x

����
x¼Vtþdþ0

�
@w

@x

����
x¼Vtþd�0

� �
¼ �P;

lim
x�Vtj j-N

w x; tð Þ
����

���� ¼ constoN: ð1Þ

The first equation of Eqs. (1) governs the vertical motion of the supported string under the
gravitational loading. This equation is valid everywhere but in the loading points. The second line
in Eqs. (1) presents the continuity condition for the string displacement at the loading points. The
third and the fourth lines show the balance of vertical forces at the loading points. The last line
states that the string deflection at an infinite distance from the moving loads should be equal to a
finite constant, the value of which is determined by the gravitational loading and the stiffness kðwÞ:
Since the loads have a constant magnitude and move with a constant speed, after a sufficiently

long time the string response may become stationary in the reference system that is fixed to the
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Fig. 1. Two loads moving on a visco-elastically supported string (linear).
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loads. This paper aims to study possible patterns of this stationary response. To find these
patterns, it is customary to introduce one variable x ¼ x � Vt instead of two independent
variables x and t: Such an introduction reduces the original partial differential equation that
describes the string vibrations to an ordinary differential equation. The idea of introducing
the running variably x is widely used for finding solitary waves in non-linear systems. In this
sense, it is possible to say that we are looking for forced solitary waves that are generated by the
loads.
Passing to the variable x; we obtain from Eqs. (1) the following system of equations that

describe the string response wðxÞ; which is ‘‘frozen’’ with respect to the loads:

c2 � V2
� �

w00 þ
Vcdp

m
w0 �

k wð Þ
m

w ¼ g; �NoxoN; xa0; xad;

wjx¼þ0¼ wjx¼�0; wjx¼dþ0¼ wjx¼d�0;

c2 � V2
� �

w0
��
x¼þ0

�w0
��
x¼�0

� �
¼ �P=m;

c2 � V2
� �

w0
��
x¼dþ0

�w0
��
x¼d�0

� �
¼ �P=m;

lim
jxj-N

w xð Þ

����
���� ¼ constoN ð2Þ

with c ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
the speed of transverse waves in the string and w0 ¼ dw=dx:

In the next section, an exact solution to Eqs. (2) will be obtained in the case of linear visco-
elastic foundation, the stiffness of which is constant, that is kðwÞ ¼ k0 ¼ const: This solution will
serve as a reference for the non-linear analysis in the following section.

3. Exact solution in the linear case

In the case kðwÞ ¼ k0 ¼ const; the system of Eqs. (2) is linear and its solution can be sought in
the following form:

w xð Þ ¼ �
mg

k0
þ

X2
n¼1

An exp qnxð Þ: ð3Þ

By substituting Eq. (3) into the first equation of Eqs. (2), the following characteristic equation is
obtained with respect to the eigenvalues qn:

c2 � V2
� �

q2n þ 2gVqn � o2
0 ¼ 0; ð4Þ

with o0 ¼
ffiffiffiffiffiffiffiffiffiffi
k0=m

p
the cut-off frequency of the string on elastic foundation and g ¼ cdp=ð2mÞ the

characteristic damping.
The roots of Eq. (4) are given as

q1 ¼
�gV þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V2 þ o2

0 c2 � V2ð Þ
q

c2 � V2
; q2 ¼

�gV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V2 þ o2

0 c2 � V2ð Þ
q

c2 � V2
: ð5Þ
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Eq. (5) shows that in the case of sub-critical damping ðgoo0Þ; depending on the velocity of the
load, the eigenvalues qn can be

(a) both real, one positive and one negative if Voc;

(b) both real and positive if coVoV� ¼ co0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � g2
q

;

(c) complex conjugated, with a positive real part if V > V�:

Case (a) is conventionally referred to as the sub-critical case in which the loads move more
slowly than waves in the structure. Cases (b) and (c) are called super-critical since the load velocity
is larger than the wave speed.
To find unknown amplitudes An; Eq. (3) should be substituted into the boundary conditions

defined by lines 2–5 of Eqs. (2). Let us accomplish this substitution for the sub-critical and super-
critical cases separately.
(a) Voc. In this case, to satisfy the boundary conditions at infinity, the string deflection must

be sought for in the form (note that Reðq1Þ > 0 and Reðq2Þo0)

w xð Þ ¼ �
mg

k0
þ

A1 exp q1xð Þ; xo0;

A2 exp q1xð Þ þ A3 exp q2xð Þ; 0oxod;

A4 exp q2xð Þ; x > d:

8><
>: ð6Þ

Constants A1 � A4 are found by substitution of Eq. (6) into the boundary conditions at the
loading points. This yields

A1 ¼
F 1þ exp �q1dð Þð Þ

q1 � q2
; A2 ¼

F exp �q1dð Þ
q1 � q2

;

A3 ¼
F

q1 � q2
; A4 ¼

F 1þ exp �q2dð Þð Þ
q1 � q2

; ð7Þ

with F ¼ P=m=ðc2 � V2Þ:
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Fig. 2. Response of the string to sub-critically moving loads (linear).
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The string pattern corresponding to this solution is shown in Fig. 2 for the following set of
parameters:

m ¼ 1:1 kg=m; T ¼ 15 kN; k0 ¼ 0:4 kN=m2; cdp ¼ 0:5 N s=m2;

P ¼ 55 N; d ¼ 10 m; ð8Þ

and V=58m/sE0.5c. These parameters are representative for realistic catenaries provided that k0

and cdp are found by dividing the stiffness and the damping factor of a dropper by the inter-
dropper distance.
Fig. 2(b) is plotted in accordance with expressions (6) and (7). Fig. 2(a) presents the string

pattern for a single load at x ¼ 0: In this case the string displacement would be given by

w xð Þ ¼ �
mg

k0
þ

P

2m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2V2 þ o2
0 c2 � V2ð Þ

q exp
� gVx� xj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V2 þ o2

0 c2 � V2ð Þ
q

c2 � V2

0
@

1
A: ð9Þ

Fig. 2 shows that in the sub-critical case the string deflection decays exponentially with the
distance from the loads. If there were no viscosity in the string foundation, the string pattern
would be symmetric with respect to the load(s).
(b) V > c: In the super-critical cases (b) and (c), both eigenvalues have a positive real part and,

therefore, there is no way to satisfy the boundary condition at plus infinity unless in front of the
first load (that is applied at x ¼ d) the amplitudes An are equal to zero. Thus, the string pattern in
this case must be sought for in the form

w xð Þ ¼ �
mg

k0
þ

A1 exp q1xð Þ þ A2 exp q2xð Þ; xo0;

A3 exp q1xð Þ þ A4 exp q2xð Þ; 0oxod;

0; x > d:

8><
>: ð10Þ

Substitution of Eq. (10) into the boundary conditions at the loading points yields

A1 ¼
F 1þ exp �q1dð Þð Þ

q1 � q2
; A2 ¼ �

F 1þ exp �q2dð Þð Þ
q1 � q2

;

A3 ¼
F exp �q1dð Þ

q1 � q2
; A4 ¼ �

F exp �q2dð Þ
q1 � q2

: ð11Þ

If there were only one load applied at x ¼ 0; then the string pattern would be given as

w xð Þ ¼ �
mg

k0
þ

P exp � gVx= c2 � V2
� �� �

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V2 þ o2

0 c2 � V2ð Þ
q sinh

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V2 þ o2

0 c2 � V2ð Þ
q

c2 � V2

0
@

1
A; xo0;

0; x > 0:

8>>><
>>>:

ð12Þ

For realistic parameters of the catenary system, case (b) is of minor importance because of a very
small viscosity, V� is just a fraction larger than the wave speed c: Therefore, in Fig. 3 the ‘‘truly’’
super-critical case is shown, in which the string exhibits a wave motion (in case (b) the string
displacement decays exponentially behind the loads as in the sub-critical case). Fig. 3(a) and (b)
show the string response to one load and two loads, respectively. Calculations were performed by
employing the parameter set (8) and V ¼ 140 m=sE1:2c:

ARTICLE IN PRESS

A.V. Metrikine / Journal of Sound and Vibration 272 (2004) 1033–10461038



Figs. 2 and 3 clearly demonstrate the two crucial differences between the string response in the
sub-critical and super-critical cases. First, the sub-critical response is nearly symmetric with
respect to the loads (note that the asymmetry would grow if the viscosity were increased). On the
contrary, the super-critical response has no such symmetry at all. In this case, in front of the loads
the string exhibits a constant displacement caused by the gravitational loading alone. The loads
do not disturb this region. This phenomenon is similar to the Mach effect [20] in acoustics and the
Cherenkov effect [21] in electrodynamics. The second difference is concerned with the character of the
string pattern. In the sub-critical case, the load-caused part of the string response is localised around
the loads, decaying exponentially with the distance from them. In contrast to that, in the super-critical
case, the loads generate waves in the string that propagate to a large distance from the loads.
In the following sections, the effect of non-linearity of the foundation on the stationary

response of the string will be studied both in the sub-critical and super-critical case. In the next
section, to explain the method of analysis, the response to a single load that is applied at x ¼ 0 will
be discussed.

4. Non-linear response to one load

With the assumption that only one load (applied at x ¼ 0) moves on the string, Eq. (2) reduces to

ðc2 � V2Þw00 þ
Vcdp

m
w0 �

k wð Þ
m

w ¼ g; �NoxoN; xa0;

wjx¼þ0¼ wjx¼�0;

c2 � V2
� �

w0
��
x¼þ0

�w0
��
x¼�0

� �
¼ �P=m;

lim
xj j-N

w xð Þ

����
���� ¼ constoN: ð13Þ
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Fig. 3. Response of the string to super-critically moving loads (non-linear).
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Hereafter, we will consider the following non-linear expression for the foundation stiffness:

k wð Þ ¼
0; w > 0;

k0 þ k2w
2; wo0:

(
ð14Þ

This expression describes reasonably well the elastic properties of the droppers, which support the
contact cable; they do not resist compression but are quite stiff against tension.
The problem at hand can be analyzed very elegantly by using the phase plane fw;w0g: In

accordance with the problem statement (13), the phase portrait that corresponds to the string
response should be constructed from

(1) trajectories of the autonomous system that are defined by the first equation of Eqs. (13);
relevant trajectories should be chosen so that the condition at infinity (the last equation in
Eq. (13)) is satisfied;

(2) a vertical (parallel to w0-axis) segment of length P=m=jc2 � V2j; the length of the segment is
defined by the balance of vertical forces in the loading point (third equation of Eq. (13)), while
it verticality follows directly from the continuity condition (second equation of Eq. (13)).

Consider first the sub-critical motion of the load Voc: In this case, the autonomous system has
one equilibrium state that is located at the point fw;w0g ¼ f�mg=k0; 0g: The characteristic
exponents q1 and q2 for this equilibrium are given in Eq. (5). In the sub-critical case q1 and q2 are
both real and have different signs, thus, the equilibrium state is a saddle (see Fig. 4). This saddle is
the only equilibrium state of the autonomous system. Therefore, the only trajectories, which do not
tend to infinity as jxj-N are the separatrices of the saddle. Consequently, the vertical segment
that represents the load should connect two separators of the saddle. This segment should start
from a separatrix that leaves the saddle and end at a separatrix that arrives at the saddle.
The resulting phase portrait is depicted in Fig. 4, which was calculated by using the parameter

set (8) and k2=k0 ¼ 0:1 1/m2. Figs. 4(a) and (b) are plotted for V=58m/sE0.5c and V=
111m/sE0.95c, respectively.
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In Fig. 4, the solid regular lines show the separatrices of the saddle, whereas other trajectories of
the autonomous system are depicted as dashed lines. Bold lines distinguish the phase portrait of
the string response. It consists of segments of two separatrices and a straight vertical segment. The
segment of the upper separatrix corresponds to the string displacement behind the load. The
vertical segment reflects the continuity of the string and a jump of the string slope at the loading
point. The segment of the lower separatrix corresponds to the string displacement in front of the
load. Note that the reason for the vertical segment to be inserted between the two separators that
are located to the right from the saddle is that in the sub-critical case w0jx¼þ0 � w0jx¼�0o0: This
inequality implies that the motion along this segment should take place downward in the phase
plane.
Fig. 4(a) shows that for relatively low velocity of the load V ¼ 0:5c; the phase portrait of the

string response has an almost perfectly triangular shape. This implies that the non-linearity of the
foundation does not influence the string response, which remains exponential, as in the linear case.
This response coincides very well with that presented in Fig. 2(a). For the chosen parameters of
the system, the non-linearity starts to play a perceptible role when the load velocity approaches
the wave speed in the string. As shown in Fig. 4(b), which is plotted for V ¼ 0:95c; in this near-
critical case the phase portrait of the string response is a deformed triangle. This deformation is a
consequence of the non-linearity, which curves the separatrices. As it is to be expected, the non-
linearity is more apparent in the vicinity of the load, where the deflection of the string is maximal.
As for a relatively slow motion of the load, the string response in the near-critical case looks
qualitatively similar to that depicted in Fig. 2(a).
Consider the super-critical motion of the load V > c: In this case, as in the previous one, the

autonomous system has one equilibrium state in the point fw;w0g ¼ f�mg=k0; 0g: The type of this
equilibrium, however, is different. Now it can be either unstable node or unstable focus. In
accordance with Eq. (5), the former occurs if coVoV�; whereas the latter takes place if V > V�:
The phase plane analysis can be accomplished in both cases completely analogously. Therefore,
we will present it on the hand of the ‘‘truly supercritical’’ motion of the load with V > V�:
To construct a phase portrait for the string response we have to use a vertical segment to

connect a trajectory that leaves the equilibrium point with a trajectory that arrives at this point.
The complication is, however, that all trajectories leave the equilibrium and there is none to arrive
at it. Thus, the only possibility of arriving at the equilibrium point is along the vertical segment
that represents the load. Consequently, as shown in Fig. 5, the phase portrait (bold) in the super-
critical case is composed of an unstable trajectory that leaves the focus and the vertical segment
that returns the phase motion to the equilibrium point. The string pattern that is defined by such a
portrait looks similar to that plotted in Fig. 3(a). The string behind the load corresponds to the
unstable trajectory that leaves the focus. The vertical segment that goes directly to the equilibrium
implies that the string deflection in front of the load is constant and equal to that at the loading
point. This is in complete agreement with Fig. 3(a) which shows a horizontal string in front of the
load in accordance with the Mach effect. Thus, in a sense, the phase portrait in Fig. 5 is a
geometrical proof of the Mach effect in the non-linear case.
Fig. 5 shows that, as in the sub-critical case, the effect of the non-linearity becomes apparent

in the near-critical regime that is shown in Fig. 5(a). As soon as the load velocity grows larger
than the wave speed, the linear model becomes capable of accurate prediction of the string
response.
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Thus, in this section, a method of analysis has been demonstrated that allows one to find the
steady state response of a string on non-linear foundation to a single moving load. In the next
section, this method will be generalised to the case of two moving loads.

5. Non-linear response to two loads

The phase-plane analysis that was applied in the previous section is capable of predicting the
string response to an arbitrary number of loads, providing that all of them have a constant (not
necessarily the same) magnitude and move with the same velocity. In this section such a capability
is demonstrated by studying the string response to two loads, which is governed by Eq. (2).
Let us first consider the sub-critical case Voc: Obviously, the introduction of the second load

does not change the phase portrait of the autonomous system so that it remains the same as
shown in Fig. 4(a). This portrait contains one equilibrium point, which is the saddle that is located
at the point fw;w0g ¼ f�mg=k0; 0g: Thus, as in the case of a single load, the phase portrait of the
non-autonomous system should include two separatrices of the saddle: one leaving the saddle and
the other arriving at it. A new element of the non-autonomous portrait is introduced by the
second load. In contrast to the case of a single load, the phase portrait should now include not one
but two vertical segments, each responsible for one load. Since the loads are assumed to have
equal magnitudes, these segments should have the same length that, in accordance with Eq. (2),
equals P=m=jc2 � V2j: To satisfy the boundary conditions at jxj-N; the first segment that is
responsible for the rear load ðx ¼ 0Þ should have its upper end attached to a separatrix that leaves
the saddle, whereas the second segment (front load, x ¼ d) should have its lower end at a
separator that arrives at the saddle. The remaining ends of the segments should belong to one and
the same trajectory, the phase motion along which corresponds to the distance between the loads.
The numerical program that constructs the phase portrait in the case of two loads (see Fig. 6)

was written in the following manner. First, the two separatrices on the right side of the saddle
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Fig. 5. Phase portrait in the super-critical case. String is subjected to one load (non-linear).

A.V. Metrikine / Journal of Sound and Vibration 272 (2004) 1033–10461042



were found. Then, the first vertical segment of the length P=m=ðc2 � V2Þ was plotted with its upper
end fixed to the upper separatrix. If the lower end of this segment happened below the lower
separatrix, then the segment was moved rightward, until the lower end assumed a position above
the lower separatrix. Next, starting from the lower end of the segment, a piece of trajectory of the
autonomous system was plotted. The variable x along this trajectory was varied from 0 to d: The
end of this trajectory was then fixed to the upper end of the second vertical segment. If the lower
end of this segment happened below the lower separatrix, the first segment was moved rightward
and this procedure was repeated until the lower end of the second segment happened on the lower
separatrix, thereby completing the phase portrait.
The resulting phase portrait in the case of two sub-critically moving loads is depicted in Fig. 6

for V ¼ 0:5c (the other parameters are given by Eq. (8) and k2=k0 ¼ 0:1 1/m2). Since the viscosity
of the string foundation is very small, it is not possible to distinguish two vertical segments in Fig.
6(a) that presents a complete phase portrait. Therefore, the domain that surrounds these segments
is magnified in Fig. 6(b). The phase portrait consists of two segments of the separatrices, two
vertical segments, and a piece of trajectory of the autonomous system. The segment of the
upper separatrix corresponds to the string displacement behind the rear load. The first vertical
segment that starts at this separator reflects the continuity of the string at x ¼ 0 and an abrupt
change of its slope at this point. A piece of trajectory of the autonomous system that connects the
vertical segments corresponds to the string displacement between the loads. The second vertical
segment satisfies the boundary conditions at the front load and the segment of the lower
separatrix corresponds to the string displacement in front of this load.
As in the case of a single load, the non-linearity of the string foundation is not significant for the

chosen set of system parameters. Therefore, the string pattern that is shown in Fig. 3(a)
corresponds to the phase portrait in Fig. 6(a) very well. To activate the non-linearity, the load
should move with a velocity that is close to the wave speed in the string.
Consider the ‘‘truly’’ super-critical case V > V� > c: The phase portrait that corresponds to this

case is plotted in Fig. 7. It consists of two pieces of unstable trajectories, which are coming from
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the unstable focus and two vertical segments of the length P=m=ðV2 � c2Þ: This portrait was
obtained in the manner that is described below.
Since the only equilibrium state of the autonomous system in the ‘‘truly’’ super-critical case is

an unstable focus, the only way to satisfy the boundary condition at x-þN is to arrive at the
focal point along a vertical segment that is related to the front load ðx ¼ dÞ: This makes it easy to
construct the phase portrait for the non-autonomous system by decreasing x from plus to minus
infinity. The reverse motion along the phase trajectories should start at the focal point and then
move down along the vertical segment of the length P=m=ðV2 � c2Þ; thereby completing the
boundary conditions at the front load. Next, a phase trajectory of the autonomous system should
be run from the lower end of this segment, decreasing the variable x from d to 0: This trajectory
corresponds to the string response between the loads and, therefore, its end gives a start to the
second vertical segment that, going downward, satisfies the boundary conditions at the rear load.
The phase portrait is completed by a trajectory of the autonomous system that connects the lower
end of the second segment and the focal point. This trajectory corresponds to the string
displacement behind the rear load.
The phase portrait that is shown in Fig. 7 corresponds very well with the string pattern in

Fig. 3(b). The reason to have nearly the same pattern in both the linear and non-linear cases is
that the non-linearity is not activated as long as the load velocity is not close to the wave speed in
the string.

6. Conclusions

In this paper, the steady state response of an infinitely long string on non-linear, visco-elastic
foundation to uniformly moving constant point loads has been studied. A method of analysis has
been proposed that employs the phase plane. In this plane, the horizontal axis is used for the
string displacement, whereas the vertical axis represents the string slope. The independent variable
for plotting the phase trajectories is the distance from the moving loads.
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Using simple geometrical considerations, phase portraits for the string response have been
constructed. These portraits consist of trajectories of the autonomous system that represent the
string displacement everywhere except the loading points, and vertical segments that satisfy the
boundary conditions at these points. It has been shown that the string response depends crucially
on the ratio between the load velocity and the wave speed in the string. In the sub-critical case, in
which the load moves slower than the waves in the string, the response is almost symmetric with
respect to the load and decays exponentially with the distance form the load. In the super-critical
case, in which the velocity of the load exceeds the wave speed, the string shows a wave response,
which extends well behind the load. In front of the load, in this case, the string is not disturbed.
Both the sub-critical and super-critical string patterns are similar to those, which would be
obtained if the string foundation were linear.
It should be emphasised that the steady-state solutions that were obtained in this paper describe

possible shapes the string might assume after a sufficiently long time, given certain initial
conditions. To ensure that there indeed exist initial conditions, which lead to these shapes, the
obtained solutions must be examined for stability, as it is done for solitons [21].
Another issue to be discussed is practical applicability of the considered model. There are two

major features of the pantograph and catenary that were not accounted for in the model. First,
the contact cable of a catenary system is always hung on discrete droppers, the distance between
which is in the range of 7–9m. Thus, modelling discrete droppers by a continuous foundation, one
has to make sure that the resulting pattern in the catenary has a characteristic length that is much
larger than the distance between droppers. The other issue, which is concerned with the discrete
character of droppers, is that every passage of a pantograph through a suspension point, leads to
a so-called transition radiation of waves in the catenary [2]. This radiation shows itself as a series
of displacement pulses that the pantograph perturbs in the string. These pulses may form a
repetitive pattern in the string but only a part of this pattern is stationary in the reference system
that is fixed to the pantograph. The other part moves with respect to the pantograph. This part,
however, could carry a negligible amount of energy, since resistance of droppers to compression is
pretty small. If this is the case, then the continuous foundation is capable of representing the
dropper’s reaction.
The second drawback of the model is concerned with modelling the pantograph. In this paper it

has been done with the help of constant loads. If there were only one pantograph, such a
modelling would not be that far from reality, since variation of the contact force between the
pantograph and catenary, which always exists, is not significant. In the case of two pantographs,
however, by modelling the pantographs as loads, possessing no degrees of freedom, we miss the
wave reflection between the pantographs. This phenomenon is known to be harmful for the
current collection, therefore it is the modelling of the pantograph that has to be improved first in
the course of development of the proposed model.
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